DIAGRAMME D'EQUILIBRE LIQUIDE-SOLIDE DE SYSTEMES BINAIRES PYRIDINE + *n*-ALCANES

O. Dahmani¹, A. Ait-Kaci¹ et J. Jose²

¹Laboratoire de thermodynamique des mélanges organiques, Institut de Chimie, Universite des Sciences et de la Technologie Houari Boumediene, BP 139, Dar el beida, Alger, Algérie ²Laboratoire de chimie analytique I, Institut des sciences de la matière, Université Claude Bernard Lyon (I), 43 B^d du 11Novembre 1918, 69622, Villeurbanne, France

(Reçu le 27 Mai 1992, Manuscrit corrigé le 14 Mars 1993)

Abstract

Solid-liquid phase diagrams have been determined for binary systems of pyridine with n-alkanes. These diagrams show the existence of large regions of partial miscibility. A general quasi chemical theory in terms of group surface interactions [1] has been applied to compute these solid-liquid phase diagrams.

Keywords: pyridine with n-alkanes, solid-liquid phase diagrams, group surface interaction

Partie expérimentale

Pour la détermination expérimentale des diagrammes d'équilibre liquidesolide des systèmes binaires pyridine-*n*-alcanes nous avons utilisé un appareil dérivé de celui de Smit. Cet appareil a été déjà décrit et utilisé par Smit [2] et par Jose *et al.* [3].

Nous avons procédé par montée de température pour la détermination des températures de fusion.

Les températures ont été détectées à l'aide de thermocouples cuivre-constantan de 0.1 mm de diamètre et nos courbes de force électromotrice en fonction du temps sont directement enregistrées sur un enregistreur de type SERVOTRACE avec une sensibilité de l'ordre de 2 microvolts.

Les températures sont déterminées alors avec une précision de 0.05°C et la vitesse de chauffage est de l'ordre de 0.5 degrés par minute.

Nous avons remesuré le système binaire d'équilibre liquide-solide pyridine-benzène déjà étudié [4] et nos résultats sont en bon accord avec ceux de la littérature (fig. (1)).

Fig. 1 Diagramme liquide-solide du système pyridine (1) + benzène (2)

x (1)	Τ/Κ	TE / K
1	278.55	-
0.897	271.85	-
0.733	263.45	-
0.580	253.40	216.05
0.474	244.95	216.05
0.280	217.90	216.05
0.196	220.15	216.05
0.096	225.95	216.05
0	231.10	

Tableau 1 Equilibre liquide-solide benzène (1) + pyridine (2)

Pour les équilibres liquide-solide étudiés, les températures de fusions T(K)en fonction de la composition ainsi que les températures eutectiques sont reportées dans les tableaux (1) à (9). Dans le tableau (10) sont regroupées les coordonnés du point eutectique de chaque système.

Les produits utilisés n'ont pas été purifiés et leur origine est la suivante:

Produits	Origine	Pureté
Pyridine	Merck	99.9%
n-hexane	Merck	99%
n-heptane	Fluka	99%
<i>n</i> -octane	Fluka	99%
n-nonane	Fluka	99%
n-décane	Merck	99%
n-dodécane	Merck	99%
n-tétradécane	Merck	99%
n-hexadécane	Merck	99%
benzène	Merck	99%

Les systèmes liquide-solide étudiés ne présentent pas de solutions solides dans tout le domaine des fractions molaires. Nous n'avons pas observé de formation de composés intermédiaires. Les eutectiques sont simples et dans la plupart des cas confondus avec le corps pur dont la température de fusion est la plus basse.

Notons que les courbes de liquidus des diagrammes liquide-solide étudiés présentent des inflexions. Ce phénomène est caractéristique de l'existence d'une lacune de miscibilité [5].

Partie théorique

Dans la théorie du réseau rigide (approximation quasi-chimique), l'enthalpie libre molaire d'excès G^{E} , l'enthalpie libre molaire partielle d'excès G^{E}_{i} et l'enthalpie molaire d'excès H^{E} sont tel les que:

$$G^{\rm E}/RT = \sum_{i} x_i \cdot \left[\ln(\varphi_i/x_i) + zq_i \sum_{s} \alpha_{\rm si} \ln(X_s \alpha_{\rm si}/X_s \alpha_{\rm s}) \right]$$
(1)

$$G_{i}^{E}/RT = \ln(\varphi_{i}/x_{i}) - \varphi_{i}/x_{i} + 1 + zq_{i}\sum_{s} \alpha_{si}\ln(X_{s}\alpha_{si}/X_{si}\alpha_{s})$$
(2)

$$H^{E}/RT = \frac{1}{2} (\sum_{i} q_{i} x_{i}) \sum_{s} \sum_{t} (X_{s} X_{t} - \sum_{i} \xi_{i} X_{si} X_{ti}) \eta_{st}(h_{st}/RT)$$
(3)

où

$$\eta_{st} = \exp\left(-g_{st}/zRT\right) \tag{4}$$

$$\alpha_{\rm s} = \sum_{\rm i} \alpha_{\rm si} \xi_{\rm i} \tag{5}$$

 X_s sont les solutions du système d'équations:

$$X_{s}\left(X_{s} + \sum_{t} X_{t} \eta_{st}\right) = \alpha_{s}$$
⁽⁶⁾

 φ_i et ξ_i sont respectivement la fraction volumique et la fraction de surface relatives à un constituant *i*. Elles s'expriment en fonction des paramètres géométriques r_i [6] et q comme:

$$\varphi_{i} = (r_{i} \cdot x_{i}) / \left(\sum_{i} r_{i} \cdot x_{i} \right); \quad \xi_{i} = (q_{i} \cdot x_{i}) / \left(\sum_{i} q_{i} \cdot x_{i} \right)$$
(7)

Soient g_{st}^{o} et h_{st}^{o} respectivement les enthalpies libres et les enthalpies d'interéchange à une température T^{o} . En considérant le paramètre h_{st}^{o} comme indépendant de la température, le paramètre g_{st} en fonction de la température s'exprime par la relation:

$$(g_{\rm st}/RT) = (g_{\rm st}^{\rm o}/RT^{\rm o}) + (h_{\rm st}^{\rm o}/RT^{\rm o})(\tau - 1)$$
(8)

où $\tau = T^{\circ} / T$; ($T^{\circ} = 298.15$ K).

Le calcul des diagrammes d'équilibre liquide-solide se ramène à la résolution de l'équation suivante traduisant les conditions d'équilibre entre phases:

$$\ln x_{i} + G_{i}^{E}(x_{i},T) / RT + (H_{i}^{f} / RT_{i}^{f} - C_{pi}^{f} / R) \cdot (T_{i}^{f} / T - 1) + (C_{pi}^{f} / R) \ln(T_{i}^{f} / T) = 0$$

où $G_i^{\rm E}(x_i,T)/RT$ est donnée par la relation (2).

Pour les substances étudiées, nous avons distingué trois types de surfaces: une surface a de type aliphatique, une surface b de type benzénique et une surface n de l'azote.

Le reste du noyau de la pyridine est considéré comme une surface de type benzénique.

Les propriétés thermodynamiques des composés purs utilisés ainsi que leurs paramètres géométriques sont regroupés dans les tableaux (11) et (12).

Les paramètres g_{ab}° et h_{ab}° ont été ajustés respectivement sur l'enthalpie libre molaire d'excès et l'enthalpie molaire d'excès du système binaire benzène-hep-

Fig. 2 Diagramme liquide-solide du système pyridine (1) + hexane (2)

Tableau 2 Equilibre liquide-solide *n*-hexane (1) + pyridine (2)

x(1)	<i>T /</i> K	TE / K
1	177.80	_
0.989	177.75	177.75
0.953	209.30	177.75
0.891	223.45	177.75
0.787	225.45	177.75
0.668	225.80	177.75
0.478	225.80	177.75
0.284	226.00	177.75
0.188	226.05	177.75
0.120	227.40	177.75
0.052	228.50	177.75
0	231.10	-

Fig. 3 Diagramme liquide-solide du système pyridine (1) + heptane (2)

x(1)	Т/К	<i>TE /</i> K
1	182.55	
0.960	195.15	182.25
0.922	216.35	182.25
0.720	225.55	182.25
0.576	227.15	182.25
0.456	227.15	182.25
0.360	227.15	182.25
0.268	227.15	182.25
0.200	227.15	182.25
0.099	227.15	182.25
0.053	228.55	182.25
0	231.10	182.25

Tableau 3 Equilibre liquide-solide *n*-heptane (1) + pyridine (2)

Fig. 4 Diagramme liquide-solide du système pyridine (1) + octane (2)

x(1)	Т/К	<i>TE /</i> K
1	216.25	-
0.983	216.10	215.50
0.957	215.50	215.50
0.916	218.45	215.50
0.815	226.80	215.50
0.679	227.50	215.50
0.498	227.70	215.50
0.411	228.00	215.50
0.309	228.10	215.50
0.204	228.10	215.50
0.093	228.20	215.50
0.050	228.85	215.50
0	231.10	-

Tableau 4 Equilibre liquide-solide *n*-octane (1) + pyridine (2)

Fig. 5 Diagramme liquide-solide du système pyridine (1) + nonane (2)

x(1)	Т/К	TE / K
1	219.95	-
0.965	218.75	217.35
0.931	217.45	217.35
0.902	223.00	217.35
0.808	228.45	217.35
0.675	228.70	217.35
0.563	228.70	217.35
0.431	228.80	217.35
0.359	228.80	217.35
0.100	228.80	217.35
0.048	228.85	217.35
0.012	229.75	217.35
0	231.10	-

Tableau 5 Equilibre liquide-solide n-nonane (1) + pyridine (2)

Fig. 6 Diagramme liquide-solide du système pyridine (1) + décane (2)

x(1)	Т/К	<i>TE / </i> K
1	243.45	_
0.922	241.80	230.00
0.817	240.80	230.00
0.653	240.80	230.00
0.590	240.75	230.00
0.482	240.75	230.00
0.388	240.75	230.00
0.262	240.75	230.00
0.152	240.75	230.00
0.099	240.75	230.00
0.045	238.55	230.00
0.018	234.95	230.00
0	231.10	

Tableau 6 Equilibre liquide-solide *n*-décane (1) + pyridine (2)

Fig. 7 Diagramme liquide-solide du système pyridine (1) + dodécane (2)

x(1)	Т/К	TE / K
1	263.45	-
0.865	261.30	230.65
0.727	259.80	230.65
0.623	259.75	230.65
0.486	259.60	230.65
0.378	259.60	230.65
0.291	259.60	230.65
0.231	259.30	230.65
0.163	259.60	230.65
0.111	258.65	230.65
0.034	255.65	230.65
0.015	234.95	230.65
0	231.10	230.65

Tableau 7 Equilibre liquide-solide *n*-dodécane (1) + pyridine (2)

Fig. 8 Diagramme liquide-solide du système pyridine (1) + tetradécane (2)

x(1)	<i>T / </i> K	TE / K
1	279.00	-
0.879	277.30	230.90
0.763	275.75	230.90
0.625	274.20	230.90
0.427	274.00	230.90
0.213	273.90	230.90
0.051	271.60	230.90
0.025	267.70	230.90
0.004	240.40	230.90
0	231.10	

Tableau 8 Equilibre liquide-solide *n*-tétradécane (1) + pyridine (2)

Les paramétres g_{bn}° et h_{bn}° ont été ajustés respectivement sur l'enthalpie libre molaire d'excès et l'enthalpie molaire d'excès du système binaire benzène-pyridine [7-9] à x=0.5 et à 298.15 K.

Fig. 9 Diagramme liquide-solide du système pyridine (1) + hexadécane (2)

x(1)	Т/К	TE / K
1	291.35	_
0.895	289.70	230.55
0.777	287.95	230.55
0.664	286.80	230.55
0.534	286.15	230.55
0.405	286.05	230.55
0.217	285.05	230.55
0.083	283.70	230.55
0.035	282.30	230.55
0.015	278.15	230.55
0	231.10	-

Tableau 9 Equilibre liquide-solide *n*-hexadécane (1) + pyridine (2)

Nous avons appliqué dans ce cas la théorie du réseau rigide dans l'approximation quasi-chimique. Le mélange benzène-pyridine est traité comme un système à deux types de surfaces. Le nombre de coordination est égal à 10.

Binaires	<i>TE /</i> K	XE (Pyridine)
Pyridine-C ₆ H ₆	216.05	0.715
Pyridine-nC6	177.70	0.011
Pyridine-nC7	182.25	0.040
Pyridine-nC8	215.50	0.043
Pyridine-nC9	217.35	0.063
Pyridine-nC10	230.30	0.991
Pyridine-nC12	230.65	0.993
Pyridine-nC14	230.90	0.998
Pyridine-nC16	230.55	0.999

Tableau 10 Coordonnées des points eutectiques

Tableau 11

Constituants	$H^{\rm f}/J\cdot{\rm mol}^{-1}$	$C_p^{\rm f}/{\rm J}\cdot{\rm mol}^{-1}\cdot{\rm K}^{-1}$
Hexane	13079.10	46.82
Heptane	14037.91	56.39
Octane	20742.08	53.84
Nonane	22088.42	63.62
Décane	33134.95	64.64
Dodécane	34293.89	69.64
Tétradécane	45070.00	82.00
Hexadécane	53361.21	73.56
Benzène	9866.27	3.18
Pyridine	7412.53	135.52

Les couples de paramètres $(g_{ab}^{\circ}, h_{ab}^{\circ})$ et $(g_{bn}^{\circ}, h_{bn}^{\circ})$ étant déterminés, g_{an}° et h_{an}° ont été ajustés respectivement sur l'enthalpie libre molaire d'excès et l'enthalpie molaire d'excès du système binaire pyridine-heptane [10, 11] à x = 0.5 et à 298.15 K.

Nous avons appliqué la théorie du réseau rigide dans l'approximation quasichimique. Le nombre de coordination z et égal à 10.

Les valeurs des paramètres ajustés sont reportés dans le tableau (13).

Sur les figures (1) à (9) sont représentées les courbes d'équilibre liquidesolide calculées (traits pleins) à l'aide de la théorie et idéales (points discontinus).

Constituants	<i>r</i> i	q i	0(ai	Осьі	0(ni
Hexane	3.9871	3.3241	1	0	0
Heptane	4.5847	3.7897	1	0	0
Octane	5.1822	4.2552	1	0	0
Nonane	5.7798	4.7207	1	0	0
Décane	6.3773	5.1862	1	0	0
Dodécane	7.5724	6.1172	1	0	0
Tétradécane	8.7675	7.0483	1	0	0
Hexadécane	9.9626	7.9793	1	0	0
Benzène	2.8248	2.0724	0	1	0
Pyridine	2.6577	1.8332	0	0.9405	0.0595

Tableau 12 Paramètres géométriques

Table 13

Paramètres		types de contacts	
	ab	an	bn
g ^o _{st} /RT ^o	0.25	22.34	11.29
$h_{\rm st}^{\rm o}/RT^{\rm o}$	0.56	27.13	0.45

Conclusion

Dans le mélange benzène-pyridine, les interactions de type A-B compensent celles de type A-A et B-B, si bien que le mélange est proche de l'idéalité, comme on peut le remarquer sur le diagramme (fig. 1).

Compte tenu de la complexité des molécules, les résultats du calcul des diagrammes d'équilibre liquide-solide des systèmes *n*-alcanes-pyridine sont très cohérents avec les résultats expérimentaux.

L'écart entre le diagramme idéal et réel est important en général. On constate cependant que pour les alcanes à longue chaine (n-hexadécane), l'effet entropique dû à la différence de taille entre les molécules agit en sens inverse que l'effet enthalpique, conduisant alors à des mélanges proches de l'idéalité.

Symboles:

- x_i = Fraction molaire du constituant.
- T = Température (K)

- H_i^f = Chaleur molaire latente de fusion du constituant pur *i*.
- C_{pi}^{f} = Capacité calorifique molaire de fusion du constituant pur *i*.
- TE = Température eutectique (K).
- z = Nombre de coordination.
- s, t = Type de surfaces.
- q_i = Surface totale de la molécule de type *i*.
- α_{si} = Fraction de surface de type *s* sur une molécule type *i*.

Bibliographie

- 1 H. V. Kehiaian, J. P. E. Grolier et G. C. Benson, J. Chim. Phys., 11-12 (1978) 75.
- 2 W: M. Smit, Rec. Trav. Chim., 75 (1956) 1309.
- 3 J. Jose, M. A. Michou-Saucet et L. M. Riollot, Thermochim. Acta 68 (1983) 207.
- 4 V. M. Kravchenko et A. P. Yeremenko, J. Appl. USSR, 23 647.
- 5 K. W. Morcom et R. W. Smith, J. Chem. Therm., 3 (1971) 507.
- 6 A. Bondi, Physical Properties of Molecular Crystals, Liquids and Glasses. John Wiley, New York 1968. p. 502.
- 7 P. R. Garret, J. M. Pollock et K. W. Morcom, J. Chem. Thermodyn., 3 (1971) 135.
- 8 P. R. Garret, J. M. Pollock et K. W. Morcom, J. Chem. Thermodyn., 5 (1973) 569.
- 9 P. R. Garret et J. M. Pollock, J. Chem. 9 (1977) 561-566, 1045-1049.
- 10 M. A. Michou-Saucet, J. Jose et C. Michou-Saucet, Int. Data Ser., Sel. Data Mixtures, (1986) pp. 140-145.
- 11 A. Ait-Kaci Thèse de doctorat d'état ès sciences. Université de Lyon 1982.

Zusammenfassung — Für binäre Systeme aus Pyridin und n-Alkanen wurden Fest-Flüssig-Phasendiagramme ermittelt. Diese Diagramme zeigen die Existenz von ausgedehnten Regionen partieller Mischbarkeit. Bei der Berechnung dieser Fest-Flüssig-Phasendiagramme wurde eine allgemeine quasichemische Theorie bezüglich der Gruppenoberflächen-Wechselwirkungen [1] angewendet.